Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate change is predicted to intensify lake algal blooms globally and result in regime shifts. However, observed increases in algal biomass do not consistently correlate with air temperature or precipitation, and evidence is lacking for a causal effect of climate or the nonlinear dynamics needed to demonstrate regime shifts. We modeled the causal effects of climate on annual lake chlorophyll (a measure of algal biomass) over 34 y for 24,452 lakes across broad ecoclimatic zones of the United States and evaluated the potential for regime shifts. We found that algal biomass was causally related to climate in 34% of lakes. In these cases, 71% exhibited abrupt but mostly temporary shifts as opposed to persistent changes, 13% had the potential for regime shifts. Climate was causally related to algal biomass in lakes experiencing all levels of human disturbance, but with different likelihood. Climate causality was most likely to be observed in lakes with minimal human disturbance and cooler summer temperatures that have increased over the 34 y studied. Climate causality was variable in lakes with low to moderate human disturbance, and least likely in lakes with high human disturbance, which may mask climate causality. Our results explain some of the previously observed heterogeneous climate responses of lake algal biomass globally and they can be used to predict future climate effects on lakes.more » « lessFree, publicly-accessible full text available March 4, 2026
-
Local‐scale environmental justice studies of freshwaters have found that marginalized populations are more likely than others to be burdened with poor‐quality waters. However, studies have yet to examine whether monitoring data are sufficient to determine the generality of such results at the national scale. We analyzed racial and ethnic community composition surrounding lakes and the presence of one‐time and long‐term (≥15 years) water‐quality data across the conterminous US. Relative to lakes in White and non‐Hispanic communities, lakes in communities of color and Hispanic communities were three times less likely to be monitored at least once. Moreover, as compared to lakes in White communities, lakes in communities of color were seven times less likely to have long‐term monitoring data; similarly, as compared to lakes in non‐Hispanic communities, lakes in Hispanic communities were nineteen times less likely to have long‐term monitoring data. Given this evidence, assessing the current water quality of and temporal changes in lakes in communities of color and Hispanic communities is extremely difficult. To achieve equitable management outcomes for people of all racial and ethnic backgrounds, freshwater monitoring programs must expand their sampling and revise their designs.more » « less
-
Abstract A variety of classification approaches are used to facilitate understanding, prediction, monitoring, and the management of lakes. However, broad‐scale applicability of current approaches is limited by either the need for in situ lake data, incompatibilities among approaches, or a lack of empirical testing of approaches based on ex situ data. We developed a new geographic classification approach for 476,697 lakes ≥ 1 ha in the conterminous U.S. based on lake archetypes representing end members along gradients of multiple geographic features. We identified seven lake archetypes with distinct combinations of climate, hydrologic, geologic, topographic, and morphometric properties. Individual lakes were assigned weights for each of the seven archetypes such that groups of lakes with similar combinations of archetype weights tended to cluster spatially (although not strictly contiguous) and to have similar limnological properties (e.g., concentrations of nutrients, chlorophylla(Chla), and dissolved organic carbon). Further, archetype lake classification improved commonly measured limnological relationships (e.g., between nutrients and Chla) compared to a global model; a discrete archetype classification slightly outperformed an ecoregion classification; and considering lakes as continuous mixtures of archetypes in a more complex model further improved fit. Overall, archetype classification of US lakes as continuous mixtures of geographic features improved understanding and prediction of lake responses to limnological drivers and should help researchers and managers better characterize and forecast lake states and responses to environmental change.more » « less
-
Key Points We observed post‐wildfire increases in nutrients, dissolved organic carbon, sediments, and acidity and reduced water clarity in lakes Water quality responses were often persistent or cumulative throughout the summer, especially for lakes with tributaries from burned areas High‐severity and shoreline burns resulted in a nearly two‐fold increase in total phosphorus concentration compared to control lakesmore » « less
-
The LAGOS-US LIMNO data package is one of the core data modules of LAGOS-US, an extensible research-ready platform designed to study the 479,950 lakes and reservoirs larger than or equal to 1 ha in the conterminous US (48 states plus the District of Columbia). The LIMNO module contains in situ observations of 47 parameters of lake physics, chemistry, and biology (hereafter referred to as chemistry) from lake surface samples (defined as observations taken from the epilimnion of a lake) obtained from the Water Quality Portal, the National Lakes Assessment (2007, 2012, 2017), and NEON programs. LIMNO provides 3,511,020 observations across all parameters collected between 1975 and 2021 from 20,329 lakes; the number of observations per lake ranged from 1 to 20,605 with a median of 32. The database design that supports the LAGOS-US research platform was created based on several important design features: lakes are the fundamental unit of consideration, all lakes in the spatial extent above the minimum size must be represented, and most information is connected to individual lakes. The design is modular, interoperable (the modules can be used with each other, as well as other comprehensive lake data products such as the USGS NHD), and extensible (future database modules can be developed and used in the LAGOS-US research platform by others). Users are encouraged to use the other two core data modules that are part of the LAGOS-US platform: LOCUS (location, identifiers, and physical characteristics of lakes and their watersheds) and GEO (characteristics defining geospatial and temporal ecological setting quantified at multiple spatial divisions) that are each found in their own data packages.more » « less
-
Abstract Maintaining regional‐scale freshwater connectivity is challenging due to the dendritic, easily fragmented structure of freshwater networks, but is essential for promoting ecological resilience under climate change. Although the importance of stream network connectivity has been recognized, lake‐stream network connectivity has largely been ignored. Furthermore, protected areas are generally not designed to maintain or encompass entire freshwater networks. We applied a coarse‐filter approach to identify potential freshwater corridors for diverse taxa by calculating connectivity scores for 385 lake‐stream networks across the conterminous United States based on network size, structure, resistance to fragmentation, and dam prevalence. We also identified 2080 disproportionately important lakes for maintaining intact networks (i.e., hubs; 2% of all network lakes) and analyzed the protection status of hubs and potential freshwater corridors. Just 3% of networks received high connectivity scores based on their large size and structure (medians of 1303 lakes, 498.6 km north–south stream distance), but these also contained a median of 454 dams. In contrast, undammed networks (17% of networks) were considerably smaller (medians of six lakes, 7.2 km north–south stream distance), indicating that the functional connectivity of the largest potential freshwater corridors in the conterminous United States currently may be diminished compared with smaller, undammed networks. Network lakes and hubs were protected at similar rates nationally across different levels of protection (8%–18% and 6%–20%, respectively), but were generally more protected in the western United States. Our results indicate that conterminous United States protection of major freshwater corridors and the hubs that maintain them generally fell short of the international conservation goal of protecting an ecologically representative, well‐connected set of fresh waters (≥17%) by 2020 (Aichi Target 11). Conservation planning efforts might consider focusing on restoring natural hydrologic connectivity at or near hubs, particularly in larger networks, less protected, or biodiverse regions, to support freshwater biodiversity conservation under climate change.more » « less
An official website of the United States government
